load_spreadsheets¶
- pyhelpers.store.load_spreadsheets(path_to_file, as_dict=True, verbose=False, prt_kwargs=None, **kwargs)[source]¶
Load one or multiple sheets from a Microsoft Excel or an OpenDocument format file.
- Parameters:
path_to_file (str | os.PathLike) – Path where the spreadsheet file is saved.
as_dict (bool) – Whether to return the retrieved data as a dictionary; defaults to
True
.verbose (bool | int) – Whether to print relevant information to the console; defaults to
False
.prt_kwargs (dict | None) – [Optional] Additional parameters for the function
pyhelpers.store.ldr._check_loading_path()
; defaults toNone
.kwargs – [Optional] Additional parameters for the method pandas.ExcelFile.parse().
- Returns:
Data of all worksheets in the file from the specified pathname
path_to_file
.- Return type:
list | dict
Note
Example data can be referred to in the functions
save_multiple_spreadsheets()
andsave_spreadsheet()
.
Examples:
>>> from pyhelpers.store import load_spreadsheets >>> from pyhelpers.dirs import cd >>> dat_dir = cd("tests\data") >>> path_to_xlsx = cd(dat_dir, "dat.ods") >>> wb_data = load_spreadsheets(path_to_xlsx, verbose=True, index_col=0) Loading "tests\data\dat.ods" ... 'TestSheet1'. ... Done. 'TestSheet2'. ... Done. >>> list(wb_data.keys()) ['TestSheet1', 'TestSheet2'] >>> wb_data['TestSheet1'] Longitude Latitude City London -0.127647 51.507322 Birmingham -1.902691 52.479699 Manchester -2.245115 53.479489 Leeds -1.543794 53.797418 >>> path_to_xlsx = cd(dat_dir, "dat.xlsx") >>> wb_data = load_spreadsheets(path_to_xlsx, verbose=True, index_col=0) Loading "tests\data\dat.xlsx" ... 'TestSheet1'. ... Done. 'TestSheet2'. ... Done. 'TestSheet11'. ... Done. 'TestSheet21'. ... Done. 'TestSheet12'. ... Done. 'TestSheet22'. ... Done. >>> list(wb_data.keys()) ['TestSheet1', 'TestSheet2', 'TestSheet11', 'TestSheet21', 'TestSheet12', 'TestSheet22'] >>> wb_data = load_spreadsheets(path_to_xlsx, as_dict=False, index_col=0) >>> type(wb_data) list >>> len(wb_data) 6 >>> wb_data[0] Longitude Latitude City London -0.127647 51.507322 Birmingham -1.902691 52.479699 Manchester -2.245115 53.479489 Leeds -1.543794 53.797418