MSSQL.read_columns¶
- MSSQL.read_columns(table_name, column_names, dtype=None, schema_name=None, chunk_size=None, **kwargs)[source]¶
Read data of specific columns of a table.
- Parameters:
table_name (str) – Name of a table in the currently-connected database.
column_names (list | tuple) – Column name(s) of the specified table.
dtype (str | None) – data type; options are
{'hierarchyid', 'varbinary', 'geometry'}
; defaults toNone
.schema_name (str | None) – Name of a schema, defaults to
DEFAULT_SCHEMA
whenschema_name=None
.chunk_size (int | None) – Number of rows to include in each chunk (if specified); defaults to
None
kwargs – [Optional] Additional parameters for the function pandas.read_sql().
- Returns:
Data of specific columns of the queried table.
- Return type:
pandas.DataFrame
Examples:
>>> from pyhelpers.dbms import MSSQL >>> from pyhelpers._cache import example_dataframe >>> mssql = MSSQL(verbose=True) Connecting <server_name>@localhost:1433/master ... Successfully. >>> mssql.get_table_names() {'dbo': ['MSreplication_options', 'spt_fallback_db', 'spt_fallback_dev', 'spt_fallback_usg', 'spt_monitor']} >>> mssql.read_columns('MSreplication_options', column_names=['optname', 'value']) optname value 0 transactional True 1 merge True 2 security_model True
See also
Examples for the method
read_table()
.