np_preferences¶
- pyhelpers.settings.np_preferences(reset=False, precision=4, head_tail=5, line_char=120, formatter=None, **kwargs)[source]¶
Alter some default parameters for displaying NumPy arrays.
This function allows customising the display options for NumPy arrays, including decimal precision, summary at the beginning and end of each dimension, line width for inserting line breaks and optional custom formatting.
- Parameters:
reset (bool) – Whether to reset to the default print options set by the function numpy.set_printoptions(); defaults to
False
.precision (int) – Number of decimal points to display, corresponding to
precision
of the function numpy.set_printoptions(); defaults to4
.line_char (int) – Number of characters per line for inserting line breaks, corresponding to
linewidth
of the function numpy.set_printoptions(); defaults to120
.head_tail (int) – Number of array items to summarise at the beginning (head) and end (tail) of each dimension, corresponding to
edgeitems
of the function numpy.set_printoptions(); defaults to5
.formatter (dict | None) – Custom format specification, corresponding to
formatter
of the function numpy.set_printoptions(); ifformatter=None
(default), empty decimal places are filled with zeros for the specifiedprecision
.kwargs – [Optional] Additional parameters for the function numpy.set_printoptions().
Examples:
>>> import numpy as np >>> np.random.seed(0) >>> random_array = np.random.rand(100, 100) >>> random_array array([[0.5488135 , 0.71518937, 0.60276338, ..., 0.02010755, 0.82894003, 0.00469548], [0.67781654, 0.27000797, 0.73519402, ..., 0.25435648, 0.05802916, 0.43441663], [0.31179588, 0.69634349, 0.37775184, ..., 0.86219152, 0.97291949, 0.96083466], ..., [0.89111234, 0.26867428, 0.84028499, ..., 0.5736796 , 0.73729114, 0.22519844], [0.26969792, 0.73882539, 0.80714479, ..., 0.94836806, 0.88130699, 0.1419334 ], [0.88498232, 0.19701397, 0.56861333, ..., 0.75842952, 0.02378743, 0.81357508]]) >>> from pyhelpers.settings import np_preferences >>> np_preferences(precision=2) >>> random_array array([[0.55, 0.72, 0.60, 0.54, 0.42, ..., 0.18, 0.59, 0.02, 0.83, 0.00], [0.68, 0.27, 0.74, 0.96, 0.25, ..., 0.49, 0.23, 0.25, 0.06, 0.43], [0.31, 0.70, 0.38, 0.18, 0.02, ..., 0.22, 0.10, 0.86, 0.97, 0.96], [0.91, 0.77, 0.33, 0.08, 0.41, ..., 0.96, 0.36, 0.36, 0.02, 0.19], [0.40, 0.93, 0.10, 0.95, 0.87, ..., 0.27, 0.46, 0.40, 0.25, 0.51], ..., [0.03, 0.99, 0.09, 0.45, 0.84, ..., 0.12, 0.29, 0.37, 0.91, 0.14], [0.62, 0.20, 0.29, 0.45, 0.55, ..., 0.48, 0.87, 0.22, 0.14, 0.93], [0.89, 0.27, 0.84, 0.76, 1.00, ..., 0.98, 0.41, 0.57, 0.74, 0.23], [0.27, 0.74, 0.81, 0.20, 0.31, ..., 0.51, 0.23, 0.95, 0.88, 0.14], [0.88, 0.20, 0.57, 0.93, 0.56, ..., 0.55, 0.40, 0.76, 0.02, 0.81]])
Reset to default settings:
>>> np_preferences(reset=True) >>> random_array array([[0.54881350, 0.71518937, 0.60276338, ..., 0.02010755, 0.82894003, 0.00469548], [0.67781654, 0.27000797, 0.73519402, ..., 0.25435648, 0.05802916, 0.43441663], [0.31179588, 0.69634349, 0.37775184, ..., 0.86219152, 0.97291949, 0.96083466], ..., [0.89111234, 0.26867428, 0.84028499, ..., 0.57367960, 0.73729114, 0.22519844], [0.26969792, 0.73882539, 0.80714479, ..., 0.94836806, 0.88130699, 0.14193340], [0.88498232, 0.19701397, 0.56861333, ..., 0.75842952, 0.02378743, 0.81357508]])